Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms from the Western Flank of the Mid-Atlantic Ridge
نویسندگان
چکیده
Deep-sea oceanic crust constitutes the largest region of the earth's surface. Accumulating evidence suggests that unique microbial communities are supported by iron cycling processes, particularly in the young (<10 million-year old), cool (<25°C) subsurface oceanic crust. To test this hypothesis, we investigated the microbial abundance, diversity, and metabolic potentials in the sediment-buried crust from "North Pond" on western flank of the Mid-Atlantic Ridge. Three lithologic units along basement Hole U1383C were found, which typically hosted ∼10(4) cells cm(-3) of basaltic rock, with higher cell densities occurring between 115 and 145 m below seafloor. Similar bacterial community structures, which are dominated by Gammaproteobacterial and Sphingobacterial species closely related to iron oxidizers, were detected regardless of variations in sampling depth. The metabolic potentials of the crust microbiota were assayed by metagenomic analysis of two basalt enrichments which showed similar bacterial structure with the original sample. Genes coding for energy metabolism involved in hydrocarbon degradation, dissimilatory nitrate reduction to ammonium, denitrification and hydrogen oxidation were identified. Compared with other marine environments, the metagenomes from the basalt-hosted environments were enriched in pathways for Fe(3+) uptake, siderophore synthesis and uptake, and Fe transport, suggesting that iron metabolism is an important energy production and conservation mechanism in this system. Overall, we provide evidence that the North Pond crustal biosphere is dominated by unique bacterial groups with the potential for iron-related biogeochemical cycles.
منابع مشابه
Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge
Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this ...
متن کاملA distinct and active bacterial community in cold oxygenated fluids circulating beneath the western flank of the Mid-Atlantic ridge
The rock-hosted, oceanic crustal aquifer is one of the largest ecosystems on Earth, yet little is known about its indigenous microorganisms. Here we provide the first phylogenetic and functional description of an active microbial community residing in the cold oxic crustal aquifer. Using subseafloor observatories, we recovered crustal fluids and found that the geochemical composition is similar...
متن کاملPetrology, geochemistry, and petrogenesis of mafic dykes from the Kermanshah Ophiolite in Sahneh-Harsin area of Western Iran
The Kermanshah ophiolite complex is a part of the Mediterranean–Zagros–Oman Tethyan ophiolites, located in the structural–tectonic zone of western Iran in the northern part of the Zagros main thrust. Doleritic sheeted dykes are well exposed within the ophiolite in the south of Sahneh. These dykes contain high MgO, Na2O, low TiO2 (2O5, and K2O contents, and high FeOt/MgO and LILE/HFSE ratios. Th...
متن کاملPhylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank
To expand investigations into the phylogenetic diversity of microorganisms inhabiting the subseafloor biosphere, basalt-hosted crustal fluids were sampled from Circulation Obviation Retrofit Kits (CORKs) affixed to Holes 1025C and 1026B along the Juan de Fuca Ridge (JdFR) flank using a clean fluid pumping system. These boreholes penetrate the crustal aquifer of young ocean crust (1.24 and 3.51 ...
متن کاملCrustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma
[1] The Mid-Atlantic Ridge around the Fifteen-Twenty Fracture Zone is unique in that outcrops of lower crust and mantle rocks are extensive on both flanks of the axial valley walls over an unusually long distance along-axis, indicating a high ratio of tectonic to magmatic extension. On the basis of newly collected multibeam bathymetry, magnetic, and gravity data, we investigate crustal evolutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016